
2011 NCSL International Workshop and Symposium

Uncertainty Analysis for 
Uncorrelated Input Quantities and 
a Generalization of the Welch-
Satterthwaite Formula which 
handles Correlated Input Quantities 

White Paper
Abstract—The Guide to the 
Expression of Uncertainty in 
Measurement (GUM) has been 
widely adopted in the different fields 
of the industry and science. This 
guide established general rules for 
evaluating and expressing uncertainty 
in the measurements. In this paper 
we will give an overview on how 
to use it for uncorrelated input 
quantities. We will also introduce 
correlated magnitudes and correlation 
types due to the important issue 
in the evaluation of measurement 
uncertainty as a consequence of the 
correlation between quantities. We 
will identify situations not included 
into the GUM, when the measurand 
can be expressed as a function of 
quantities with common sources. So 
the issue appears when we use the 
typical Welch-Satterthwaite formula 
used to calculate the effective 
number of degrees of freedom when 
the measurement errors are not 
with finite degrees of freedom and 
uncorrelated. We will introduce 
a generalization of the Welch-
Satterthwaite formula for correlated 
components with finite degrees of 
freedom. 

This paper will also include other 
methods for computing confidence 
limits and expanded uncertainties 
such as using Convolution based on 
mathematical methods or evaluating 
the measurement uncertainty based 
on the propagation of distributions 
using Monte Carlo simulation.

Speaker: Alberto Campillo
Agilent Technologies
Ctra N-VI km 18.200 Las Rozas, Madrid 28230, Spain,
Phone: (34)91-631-3155 Fax: (34)91-631-3001
E-mail: alberto_campillo@agilent.com

Introduction
In general a measurement is not measured directly, but is determined from n 
other quantities through a functional relationship:  

In cases where the input quantities are independent, the combined standard 
uncertainty is the positive square root of the combined variance which is given 
by:

Mutual dependences in the knowledge about the input quantities can be 
expressed as a covariance or a correlation coefficient and can be used during 
the propagation.
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The degree of correlation between ix  and  jx  is characterized by the esti-
mated correlation coefficient.

The expanded uncertainty of measurement is obtained by multiplying the stan-
dard uncertainty of the output estimate by a coverage factor k  which is chose 
on the basis of the desired level of confidence to be associated with the internal 
defined by: ( )* cU k u y=

When a Normal distribution can be attributed to the measurand, and the stan-
dard uncertainty associated with the output estimate has sufficient reliability, 
the standard coverage factor 2k =  shall be used.

The assumption is that the combined error follows a normal (infinite degrees of 
freedom) or t -Student distribution (finite degrees of freedom) results from the 
Central Limit Theorem.

This theorem demonstrates that the combined error distribution converges 
toward the normal distribution as the number of constituent errors increases, 
regardless of their underlying distributions (Figure 1).

Figure 1. Combined error distribution
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A first approach to determine the expanded uncertainty for a confidence level is 
to use a coverage factor of a normal distribution, k :

If the number of random readings is small, so the value of the  Au can be not 
correct, and the distribution of the random component is better to represent 
it by a t -Student distribution, but now we could overvalue the uncertainty, 
especially if the number of measurements is small and the  Au and  Bu values 
are similar in size

So the best way to solve this problem is using the approach of the Welch 
Satterwaite formula. 

If a Normal distribution can be assumed, but the standard uncertainty associ-
ated with the output estimate is with insufficient reliability and it is not possible 
to increase the number of repeated measurements, we will use the Welch 
Satterthwaite formula. In such a case, the reliability of the standard uncertainty 
assigned to the output estimate is determined by its effective degrees of
freedom.

Considering a direct measurement of  n independent measurement errors, the 
distribution may be approximated by a t -distribution with an effective degrees 
of freedom  effν obtained from the Welch Satterthwaite formula:

The coverage factor ( )k p will be obtained from the t-student distribution 
evaluated for a coverage probability of 95.45 %.

Degrees of 
Freedom

Fraction p in percent
68.27 5 90 95 95.45 5 99 99.73 5

1 1.84 6.31 12.71 13.97 63.66 235.80
2 1.32 2.92 4.30 4.53 9.92 19.21
3 1.20 2.35 3.18 3.31 5.84 9.22
4 1.14 2.13 2.78 2.87 4.60 6.62
5 1.11 2.02 2.57 2.65 4.03 5.51
10 1.05 1.81 2.23 2.28 3.17 3.96
20 1.03 1.72 2.09 2.13 2.85 3.42
30 1.02 1.70 2.04 2.09 2.75 3.27
40 1.01 1.68 2.02 2.06 2.70 3.20
50 1.01 1.68 2.01 2.05 2.68 3.16
100 1.005 1.660 1.984 2.025 2.626 3.077
~ 1.000 1.645 1.960 2.000 2.576 3.000

t -student distribution table

1 1
2 2 2 22 2  A B A BU U U k u u   = + = +   

22 2 2 2 * *   A BU t u k u = + 
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3. A normal distribution cannot be justified
In cases where the assumption of a normal distribution cannot be justified and 
it is not possible to apply the Central Limit Theorem, we may find situations 
where one of the uncertainty contributions in the budget can be identified as a 
dominant term or situations when two of the uncertainty contributions in the 
budget can be identified as dominant terms.

Knowing the distribution density ( )yϕ  we can determine the coverage prob-
ability p, using the following integral relation:

As the coverage factor may be expressed as:

3.1 Cases where we have a rectangular distribution as a dominant 
term:

Solving this relation for the Expanded Uncertainty U and inserting the result 
together with the expression of the Standard Measurement Uncertainty related 
to a Rectangular Distribution given by:

Finally gives the relation:

And for a Coverage Probability p 95 %= , the coverage factor k  is:

Figure 2. Rectangular distribution
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3.2 Cases where two of the uncertainty contributions in the budget 
can be identified as dominant terms.

This will involve evaluation of the coverage factor of a stated coverage prob-
ability for the convolved distributions.

So depending on the distribution types which are convolved, the coverage factor 
for a coverage probability of 95.45 % may be obtained from the following Table 1 
depending of the stated ratio:

U(y )
N/R

k95.45% U(y )
N/U

k95.45% U(y )
R/U

k95.45% U(y )
R/R

k95.45%

0.0 1.65 0.0 1.41 0.0 1.41 0.0 1.65
0.4 1.79 0.4 1.71 0.4 1.73 0.2 1.71
0.8 1.92 0.8 1.89 0.8 1.88 0.4 1.82
1.0 1.95 1.0 1.93 2.0 1.86 0.6 1.89
1.4 1.98 1.4 1.97 6.0 1.70 0.8 1.92

∞ 2.00 ∞ 2.00 ∞ 1.65 1 1.93

N: Normal, R: Rectangular, U: U-Shaped

Table 1. If two distributions are convolved, the Coverage Factor k  is obtained 
from the following table

4. Distribution for Combined error using 
convolution
In case where two or more errors are statistically independent, the distribution 
for the combined errors can be obtained by convolution. This method can be 
applied for direct measurements where the measurement process errors are 
statistically independent, so no error correlations.

( ) ( )( ) ( ) ( )*   y f g y f g y dϕ τ τ τ
∞

−∞

= = −∫
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Figure 3. Symmetrical Trapezoidal distribution

4.1 Convolving two Rectangular Distributions:

If dominant contributions arise from Rectangular Distributions of values, the 
distribution resulting from convolving then gives a symmetrical Trapezoidal 
Distribution (Figure 3).

Where the half widths of the base and top respectively are: c b a= +  and 
d b a= −  and the edge parameter:

Where the distribution density may be conveniently expressed in the form: 

The square of the standard measurement uncertainty deduced from the trap-
ezoidal distribution is:
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Knowing that the coverage probability is: 

And the coverage factor 

So, the coverage factor will be:

Finally, the coverage factor for a coverage probability of 95 % appropriate to a 
trapezoidal distribution with an edge parameter of β  < 0.95 is calculated from 
the relation:

 ( )k p can change from 1.645 to 1.93 depending of β . (Table 2 and Figure 4)

Edge Parameter (β ) Coverage Factor (k)
0 1.927

0.1 1.895
0.2 1.8756
0.3 1.8457
0.4 1.8082
0.5 1.706
0.6 1.7246
0.7 1.6862
0.8 1.656
0.9 1.645

Table 2. Edge Parameter vs. Coverage Factor
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Figure 5. If two Gaussian distributions are convolved, the result is other Gaussian 
distribution.

4.2 Convolving two Gaussians Distributions

The combined error distribution takes on a Gaussian (Figure 5).
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Figure 4. Coverage Factor k vs. Edge Parameter of a trapezoidal distribution
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5. Welch-Satterthwaite formula for correlated 
components
The implementation of the GUM exhibits an issue related to the effective 
degrees of freedom when the measurand is expressible as a function of interme-
diate quantities that depend on one or more shared inputs. The apparent issue 
is found in the fact that a linear correlation coefficient of zero does not imply 
statistical independence. Therefore, the variables cannot be independent
unless they are normal, and both degrees of freedom are infinite. It is not spe-
cifically associated with the use of the Welch-Satterthwaite formula. It arises 
from loose and incomplete usage of statistical principles.

We will extend the method described in the GUM to be applicable with cor-
related components of uncertainty with finite degrees freedom. For this kind of 
condition, we can use as a generalization of the Welch-Satterthwaite formula 
the expression proposed by Howard Castrup [ ]2 .

So, considering now two measurement errors 1e  and 2e  with uncertainties 1u  
and 2u  respectively, and whose correlation coefficient is 12 ρ  , then the vari-
ance of the total error is given by:

Using the addition rule, we have

Working a bit with the cross-product and covariance terms we achieve the fol-
lowing expression:

Knowing that 
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=
 and using the before expression for  n  

measurement errors where two or more are correlated, so the final expression 
to calculate the Effective Degrees of Freedom for correlated components will be:

If all the correlation coefficients are zero, this equation simplifies to the Welch-
Satterthwaite formula.
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6. Propagation of distributions using Monte Carlo 
simulation
When the model is non-linear or when the probability density function (PDF) for 
the output quantity departs appreciable from a Gaussian distribution or a scaled 
and shifted t-student distribution we will also introduce as alternative the Monte 
Carlo Method (MCM). This method deals with the propagation of probability 
distribution of the input quantities of a mathematical method of measurements.

MCM provides a method to obtain an appropriate numerical representation of 
the output quantity Y  by means of its distribution function G , given a mea-
surement model equation. G is obtained by sampling of the PDF of the input 
quantities ix and applying the model of measurement to obtain sampled values 
for the output quantity Y . Expectation values, variance and coverage intervals 
of Y  can be extracted from G .

The accuracy of the resulting G  increases with the number of trials. An adap-
tative Monte Carlo procedure can be used instead of using a fixed number of 
trials to guarantee that the results achieve a required tolerance. This procedure 
involves carrying out an increasing number of Monte Carlo trials until mean, 
variance and coverage interval have stabilized. A numerical result can be con-
sidered stabilized if twice the standard deviation associated with it is less than 
the numerical tolerance associated with the standard uncertainty ( )u y .

7. Learning Objectives
This paper described the method used to estimate the measurement uncertainty 
in accordance with the principles given in the GUM for uncorrelated input 
quantities, including cases where it is not possible to apply the Central Limit 
Theorem. This paper has also extended the method to be applicable with cor-
related components of uncertainty with finite degree of freedom using a
generalization of the Welch-Satterthwaite formula.

Another possibility was finally introduced when all the quantities are correlated 
and normally distributed. The Monte Carlo Method is a useful tool, to calculate 
uncertainties when the conditions required applying the GUM are not met, and 
to validate and gain confidence with the results obtained with GUM.
The last introduced method can handle correlations as long as all quantities 
which are correlated are distributed normally or are totally correlated. In practice 
this can be an important limitation in case the distribution of the correlated 
quantities differs significantly from normal. Often it is not possible to specify 
the joint PDF for the input variables or the joint PDF may not be in a form that is 
easy to numerically simulate.
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